小行星

热爱平淡,向往未知


  • 首页

  • 分类

  • 归档

  • 关于

  • 阅读排行

  • 搜索

latex chap编号0.x

发表于 2018-04-Sat | 阅读次数:

文章格式改为chapter

latex字号

发表于 2018-04-Sat | 阅读次数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
\usepackage{CJK}
\usepackage{ifthen}

\newcommand{\CJKfontsize}[4]{%
\fontsize{#1}{#2 plus#3 minus #4}\selectfont}
\newcommand\zihao[1]{%
\ifthenelse{\equal{#1}{0}}{%
\CJKfontsize{42bp}{50.4pt}{.5pt}{.3pt}}{}%
\ifthenelse{\equal{#1}{0-}}{%
\CJKfontsize{36bp}{43.2pt}{.5pt}{.3pt}}{}%
\ifthenelse{\equal{#1}{1}}{%
\CJKfontsize{26bp}{31.2pt}{.5pt}{.3pt}}{}%
\ifthenelse{\equal{#1}{1-}}{%
\CJKfontsize{24bp}{28.8pt}{.5pt}{.3pt}}{}%
\ifthenelse{\equal{#1}{2}}{%
\CJKfontsize{22bp}{26.4pt}{.5pt}{.3pt}}{}%
\ifthenelse{\equal{#1}{2-}}{%
\CJKfontsize{18bp}{21.6pt}{.3pt}{.2pt}}{}%
\ifthenelse{\equal{#1}{3}}{%
\CJKfontsize{16bp}{19.3pt}{.3pt}{.2pt}}{}%
\ifthenelse{\equal{#1}{3-}}{%
\CJKfontsize{15bp}{18pt}{.3pt}{.2pt}}{}%
\ifthenelse{\equal{#1}{4}}{%
\CJKfontsize{14bp}{16.8pt}{.3pt}{.2pt}}{}%
\ifthenelse{\equal{#1}{4-}}{%
\CJKfontsize{12bp}{14.4pt}{.3pt}{.2pt}}{}%
\ifthenelse{\equal{#1}{5}}{%
\CJKfontsize{10.5bp}{12.6pt}{.3pt}{.2pt}}{}%
\ifthenelse{\equal{#1}{5-}}{%
\CJKfontsize{9bp}{10.8pt}{.2pt}{.1pt}}{}%
\ifthenelse{\equal{#1}{6}}{%
\CJKfontsize{7.5bp}{9pt}{.2pt}{.1pt}}{}%
\ifthenelse{\equal{#1}{6-}}{%
\CJKfontsize{6.5bp}{7.8pt}{.2pt}{.1pt}}{}%
\ifthenelse{\equal{#1}{7}}{%
\CJKfontsize{5.5bp}{6.6pt}{.1pt}{.1pt}}{}%
\ifthenelse{\equal{#1}{8}}{%
\CJKfontsize{5bp}{6pt}{.1pt}{.1pt}}{}}

mac latex配置

发表于 2018-04-Sat | 阅读次数:

下载MacTex并安装

1
http://www.tug.org/mactex/

Latex编译器TexShop的设置

安装完成后,会有TexShop编译器。

完成如下两个中文的环境设置:

  1. 设置默认的编译为Xelatex:Preferences—Typesetting—Default Command—Command Listed Below—XeLaTex;
  2. 设置语言编码为UTF-8:Preferences—Source—Encoding—Unicode(UTF-8);当然Text and Background Colors也可以设置为白字黑底;

测试中英文混搭

1
2
3
4
5
6
7
8
9
\documentclass{article}
\usepackage{fontspec}
\setmainfont{SimSun}

\begin{document}

Hello, \LaTeX3, 中文混搭效果。

\end{document}

tkinter not found

发表于 2018-04-Sat | 阅读次数:

在py文件里面写的

1
import matplot

mac miniconda安装

发表于 2018-04-Sat | 阅读次数:
1
/Users/yinghong/.bash_profile

embedding

发表于 2018-04-Wed | 阅读次数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
>>> # an Embedding module containing 10 tensors of size 3
>>> embedding = nn.Embedding(10, 3)
>>> # a batch of 2 samples of 4 indices each
>>> input = Variable(torch.LongTensor([[1,2,4,5],[4,3,2,9]]))
>>> embedding(input)

Variable containing:
(0 ,.,.) =
-1.0822 1.2522 0.2434
0.8393 -0.6062 -0.3348
0.6597 0.0350 0.0837
0.5521 0.9447 0.0498

(1 ,.,.) =
0.6597 0.0350 0.0837
-0.1527 0.0877 0.4260
0.8393 -0.6062 -0.3348
-0.8738 -0.9054 0.4281
[torch.FloatTensor of size 2x4x3]

>>> # example with padding_idx
>>> embedding = nn.Embedding(10, 3, padding_idx=0)
>>> input = Variable(torch.LongTensor([[0,2,0,5]]))
>>> embedding(input)

Variable containing:
(0 ,.,.) =
0.0000 0.0000 0.0000
0.3452 0.4937 -0.9361
0.0000 0.0000 0.0000
0.0706 -2.1962 -0.6276
[torch.FloatTensor of size 1x4x3]

mobilenet v2结构

发表于 2018-04-Mon | 阅读次数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
MobileNetV2(
(features): Sequential(
(0): Sequential(
(0): Conv2d(5, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU(inplace)
)
(1): InvertedResidual(
(conv): Sequential(
(0): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True)
)
)
(2): InvertedResidual(
(conv): Sequential(
(0): Conv2d(16, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=96, bias=False)
(4): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(96, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True)
)
)
(3): InvertedResidual(
(conv): Sequential(
(0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(144, 144, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=144, bias=False)
(4): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(144, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True)
)
)
(4): InvertedResidual(
(conv): Sequential(
(0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(144, 144, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=144, bias=False)
(4): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(144, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
)
)
(5): InvertedResidual(
(conv): Sequential(
(0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(4): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
)
)
(6): InvertedResidual(
(conv): Sequential(
(0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(4): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
)
)
(7): InvertedResidual(
(conv): Sequential(
(0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False)
(4): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
)
)
(8): InvertedResidual(
(conv): Sequential(
(0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(4): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
)
)
(9): InvertedResidual(
(conv): Sequential(
(0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(4): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
)
)
(10): InvertedResidual(
(conv): Sequential(
(0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(4): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
)
)
(11): InvertedResidual(
(conv): Sequential(
(0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(4): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True)
)
)
(12): InvertedResidual(
(conv): Sequential(
(0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False)
(4): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True)
)
)
(13): InvertedResidual(
(conv): Sequential(
(0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False)
(4): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True)
)
)
(14): InvertedResidual(
(conv): Sequential(
(0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(576, 576, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=576, bias=False)
(4): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(576, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True)
)
)
(15): InvertedResidual(
(conv): Sequential(
(0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)
(4): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True)
)
)
(16): InvertedResidual(
(conv): Sequential(
(0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)
(4): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True)
)
)
(17): InvertedResidual(
(conv): Sequential(
(0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU6(inplace)
(3): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)
(4): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU6(inplace)
(6): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True)
)
)
(18): Sequential(
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1280, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU(inplace)
)
(19): AvgPool2d(kernel_size=7, stride=7, padding=0, ceil_mode=False, count_include_pad=True)
)
(classifier): Sequential(
(0): Dropout(p=0.5)
(1): Linear(in_features=1280, out_features=32, bias=True)
)
)

两大减少计算量方法

发表于 2018-04-Mon | 阅读次数:

第一种是 先depth-wise卷积,后升维
第二种是 先降维,然后卷积,然后升维

plt dpi

发表于 2018-04-Sun | 阅读次数:
1
2
import matplotlib as mpl
mpl.rcParams['figure.dpi']= 230

未命名

发表于 2018-04-Sun | 阅读次数:
1…404142…59
fangyh

fangyh

最爱的是那苍穹之外的浩渺宇宙

588 日志
4 分类
66 标签
© 2020 fangyh
由 Hexo 强力驱动
|
主题 — NexT.Mist v5.1.3
|本站总访问量次