pytorch使用学习 发表于 2018-03-Thu | 阅读次数: 优点多 GPU 支持,自定义数据加载器,极简的预处理过程模块PyTorch 张量1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556torch.Tensor(5, 3)---------------------------------------2.4878e+04 4.5692e-41 2.4878e+044.5692e-41 -2.9205e+19 4.5691e-411.2277e-02 4.5692e-41 -4.0170e+194.5691e-41 1.2277e-02 4.5692e-410.0000e+00 0.0000e+00 0.0000e+00[torch.FloatTensor of size 5x3]torch.Tensor(5, 3).uniform_(-1, 1)----------------------------------------------0.2767 -0.1082 -0.1339-0.6477 0.3098 0.1642-0.1125 -0.2104 0.8962-0.6573 0.9669 -0.38060.8008 -0.3860 0.6816[torch.FloatTensor of size 5x3]>>> torch.FloatTensor([[1, 2, 3], [4, 5, 6]])1 2 34 5 6[torch.FloatTensor of size 2x3]>>> print(x[1][2])6.0>>> x[0][1] = 8>>> print(x)1 8 34 5 6[torch.FloatTensor of size 2x3]cpu 2 gpu1234567891011x = torch.FloatTensor(5, 3).uniform_(-1, 1)print(x)x = x.cuda(device=0)print(x)x = x.cpu()print(x)数学运算,自动求导模块,最优化模块,神经网络模块请作者喝一杯咖啡☕️打赏微信支付