pytorch使用学习

优点

多 GPU 支持,自定义数据加载器,极简的预处理过程

模块

PyTorch 张量

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
torch.Tensor(5, 3)

---------------------------------------

2.4878e+04 4.5692e-41 2.4878e+04

4.5692e-41 -2.9205e+19 4.5691e-41

1.2277e-02 4.5692e-41 -4.0170e+19

4.5691e-41 1.2277e-02 4.5692e-41

0.0000e+00 0.0000e+00 0.0000e+00

[torch.FloatTensor of size 5x3]



torch.Tensor(5, 3).uniform_(-1, 1)

---------------------------------------------

-0.2767 -0.1082 -0.1339

-0.6477 0.3098 0.1642

-0.1125 -0.2104 0.8962

-0.6573 0.9669 -0.3806

0.8008 -0.3860 0.6816

[torch.FloatTensor of size 5x3]


>>> torch.FloatTensor([[1, 2, 3], [4, 5, 6]])

1 2 3

4 5 6

[torch.FloatTensor of size 2x3]

>>> print(x[1][2])

6.0

>>> x[0][1] = 8

>>> print(x)

1 8 3

4 5 6

[torch.FloatTensor of size 2x3]

cpu 2 gpu

1
2
3
4
5
6
7
8
9
10
11
x = torch.FloatTensor(5, 3).uniform_(-1, 1)

print(x)

x = x.cuda(device=0)

print(x)

x = x.cpu()

print(x)

数学运算,自动求导模块,最优化模块,神经网络模块

请作者喝一杯咖啡☕️